UNHCR
Post Emergency Desludgable Institutional Latrine

Tools and Guidance for Refugee Settings

UNHCR
The UN Refugee Agency
UNHCR Standardized WASH Designs
Post Emergency Institutional Latrine (Desludgable)

FOREWORD

These post emergency institutional latrine designs form part of UNHCR’s series of Standardized WASH Design Guidelines for Refugee Settings which are the result of an extensive review process with WASH actors active in refugee settings. It is recognized that the Standardized WASH Designs will require continuous review and amendment in response to changes in engineering best practice and feedback from the field. Therefore further review will be managed by a Technical Review Committee which will meet regularly to discuss issues related to the use of the design and an annual review will be reported back to the WASH community. More urgent amendments will be reported as, and when, required. Note that this latrine is based on a design shared by IRC.
NOTES
1. Area of 8m x 4m to be cleared and perfectly leveled.
2. All WASH infrastructure to be located at least 30m from water sources. Distances to be increased near fissured rock.
3. Ensure the base of the pit is at least 1.5m above the highest recorded ground water level.
4. Do not excavate below 2.00m manually in soft soils if there is a risk of collapse.
5. Water storage tank should be properly sized to take into account roof size, daily water demand, and average rainfall data.
Front View

NOTES
1. Below ground structure to be constructed from high quality cement blocks 20cm x 20cm x 40cm with 4cm wall and web thickness.
2. Below ground mortar 1 part cement to 3 parts coarse sand. Above ground 1 part cement to 4 parts sand.
3. Ensure the vault structure is perfectly square and level (perform a 3-4-5 triangle check in the corners).
4. Ensure the slab is kept damp and covered (out of direct sunlight) for at least 7 days.
Vault Section

NOTES
1. Do not block the base of the pit, it should be left open to facilitate drainage.
2. Vaults to be emptied by desludging tanker (vacuum type) and should not be emptied by manual methods.
3. Note that water may be required to liquefy vault contents if the latrine has been in use for many years.
4. Suction hose to enter either through suquatting hole or through access cover.
5. Note that if desludging tankers are not available then manual emptying should only take place after a stabilization period of 2 years (Guidelines for the Safe use of Wastewater, Excreta and Greywater, WHO 2006).
NOTES
1. Pit depth and platform height to be determined by site conditions (e.g. hard rock depths, groundwater table levels, flood levels).
Handwashing platform 100cm x 100cm x 40cm with 8cm cover slab (non-reinforced).

All toilets must have functional handwashing facility equipped with soap and water at all times.

Reinforced concrete access cover 50cm x 50cm upper opening size and 46cm x 46cm lower opening size.

Larger double-compartment to facilitate use by elderly person and carer, disabled user or mother and young child.

NOTES
1. All doors hung straight and level.
2. All doors equipped with three (3) hinges at least 50cm long. All screw holes filled with screws. Nails not permitted.
3. Maximum gap between door and frame 3mm. Maximum gap between door and floor 10mm.
4. All doors to be equipped with a long child friendly handle of at least 50cm length on both the inside and outside door faces.
5. All doors to be equipped with a child friendly and secure locking mechanism.
Keyhole Template

NOTES
1. The keyhole template should be made from 2cm thick wooden board.
2. The shape of the foot rests should ideally be cut out using a jig-saw or other fine saw blade.
3. The final height of the foot rests is 2cm above the slab.
4. Slab surface to be given a light brush finish to prevent slip risk.

Desludgable Toilet
Keyhole Template

DRAWN BY
B. Harvey - 11/10/15
APPROVED BY
M. Burt - 15/11/15
SCALE
1:5
UNITS
metres
SHEET
6 of 6
DATE PUBLISHED
15/11/15
1. Area of 8m x 4m to be cleared and perfectly leveled.

Corner posts 5cm above ground and exactly the same level. This level will become the upper edge of the latrine slab.

2. Excavate the main pit to a level 3.80m below the top of the posts. In soft soils do not excavate below 2.00m manually if there is a risk of collapse. Ensure the base of the pit is at least 1.5m above the highest recorded ground water level.
ENSURE RING BEAM WOODEN SHUTTERING IS **PERFECTLY SQUARE AND LEVEL** (PERFORM A 3-4-5 TRIANGLE CHECK IN EACH CORNER). The upper surface should finish exactly 5cm below the reference ground level.

Build four desludgable latrine vaults of internal dimensions 1.00m x 2.20m. The lower floors of the vaults should be left open to facilitate drainage. Gaps should also be left in the mortar every 2nd block to facilitate drainage.

Prepare wooden shuttering to create a continuous 18cm high x 16cm wide ring beam. Four 8mm Ø high tensile mild steel reinforcement bars to be installed in each beam with stirrups of 14cm x 12cm x 6mm Ø positioned every 20cm.

Excavate the outer slab area to a level 0.15m below the top of the posts.
5. 0.6 m3 concrete 18 cm thick x 16 cm wide slab ring beam (1:2:4 cement dosage 320 kg/m3).

6. 10 cm of crushed and compacted hardcore material covered with sand blinding.

Ensure outer slab shuttering is perfectly square and level.

Prepare outer shuttering to create a reinforced concrete slab 10 cm thick.
7. Vent pipe templates - 90mm PVC pipe x 15cm

8mm Ø steel weld mesh 20cm x 20cm positioned 2.5cm above compacted hard core.

Keyhole templates – 150mm PVC pipe x 15cm + wooden block 10cm wide x 23cm long x 15cm high.

Access cover shuttering 50cm x 50cm upper opening size and 46cm x 46cm lower opening size.

2.4m³ reinforced concrete slab 10cm thick (1:2:4 cement dosage 320 kg/m³).

Foot rest templates – 2cm thick.
Ensure slab is kept damp and out of direct sunlight for at least 7 days.

Access cover shuttering 50cm x 50cm upper opening size and 46cm x 46cm lower opening size.

4 x 0.02m3 reinforced concrete 10cm thick access covers (1:2:4 cement dosage 320 kg/m3).

Lifting handles 8mm high tensile steel reinforcement 20cm long 8cm high with 5cm long tabs.

8mm Ø steel weld mesh 20cm x 20cm positioned 2.5cm above base.
11. Superstructure to be fabricated from cement blocks 20cm x 20cm x 40cm and 4cm wall thickness.

ENSURE CORNERS ARE PERFECTLY SQUARE (PERFORM A 3-4-5 TRIANGLE CHECK IN EACH CORNER).

12. Block wall height 2.00m

Mortar (1 part cement to 5 parts coarse sand).

Superstructure to be fabricated from cement blocks 20cm x 20cm x 40cm and 4cm wall thickness.

Larger double- compartment to facilitate use by disabled person, elderly person and carer, or mother and young child.
Prepare wooden shuttering to create a continuous 18cm high x 16cm wide ring beam. Four 8mm Ø high tensile mild steel reinforcement bars to be installed in each beam with stirrups of 14cm x 12cm x 6mm Ø positioned every 20cm.

0.5m³ concrete 18cm thick x 16cm wide ring beam (1:2:4 cement dosage 320 kg/m³).
Adapt design to include optional disability ramp if required.

Roof beams 20cm x 2.5cm x 2.35m
17. All doors fitted with child friendly secure locking mechanism. Ensure doors are hung straight and level. Gap between floor and door to be <10mm. Vent pipes to be fitted with metallic mosquito mesh.

18. Optional raised version for sites with hard ground, high water tables, or at risk of flooding. All toilets must have functional handwashing facility equipped with soap and water at all times.
UNHCR WASH MANUAL | POST EMERGENCY INSTITUTIONAL LATRINE

BILL OF QUANTITIES

<table>
<thead>
<tr>
<th>Description</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wooden Posts (0.65m x 5cm x 5cm)</td>
<td>34 pcs</td>
</tr>
<tr>
<td>Wooden Planks (4m x 20cm x 2.5cm)</td>
<td>29 pc</td>
</tr>
<tr>
<td>Wooden Posts (4m x 5cm x 5cm)</td>
<td>5 pcs</td>
</tr>
<tr>
<td>Nails (7cm Galvanized)</td>
<td>1½ kg</td>
</tr>
<tr>
<td>Domed Head Nails (4cm Galvanized)</td>
<td>½ kg</td>
</tr>
<tr>
<td>Mild Steel Weld Mesh 8mmØ 20cm x 20cm</td>
<td>25 m²</td>
</tr>
<tr>
<td>Mild Steel Reinforcement Bars 8mmØ x 4m</td>
<td>41 pcs</td>
</tr>
<tr>
<td>Mild Steel Reinforcement Stirrups 14cm x 12cm x 6mmØ</td>
<td>198 pcs</td>
</tr>
<tr>
<td>Mild Steel Tying Wire 0.5mmØ</td>
<td>1 kg</td>
</tr>
<tr>
<td>Cement Blocks (20cm x 20cm x 40cm) 4cm Walls and Web</td>
<td>1,406 pcs</td>
</tr>
<tr>
<td>GI Sheeting 3m x 0.85m BG28</td>
<td>9 pcs</td>
</tr>
<tr>
<td>Metallic Door Bolt (4cm Galvanized)</td>
<td>4 pc</td>
</tr>
<tr>
<td>Metallic Door Hinge (4cm x 8cm x 2mm Galvanized)</td>
<td>12 pcs</td>
</tr>
<tr>
<td>Wooden Grab Rails and Door Handles (Minimum 50cm Length)</td>
<td>8 pcs</td>
</tr>
<tr>
<td>Wooden Door (Including Frame) 0.8m x 2.0m</td>
<td>3 pcs</td>
</tr>
<tr>
<td>Wooden Door (Including Frame) 1.0m x 2.0m</td>
<td>3 pcs</td>
</tr>
<tr>
<td>Handwashing Container 200 Litres</td>
<td>1 pcs</td>
</tr>
<tr>
<td>Guttering Assembly with Downpipe</td>
<td>6.4 m</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>4.7 m³</td>
</tr>
<tr>
<td>Coarse Gravel (6mm – 10mm)</td>
<td>3.3 m³</td>
</tr>
<tr>
<td>Cement (50kg sacks)</td>
<td>38 sacks</td>
</tr>
</tbody>
</table>
1. Wooden Posts (pc) 5cm x 5cm x 65cm
2. Wooden Planks (pc) 2.5cm x 20 cm x 4m
3. Wooden Posts (pc) 5cm x 5cm x 4m
4. Nails 7cm (kg)
5. Steel Weld-Mesh 20cm x 20cm x 8mmØ
6. Steel Reinforcement Bars 8mmØ x 4m (pc)
7. Steel Stirrups 14cm x 12cm x 6mm (pc)
8. GI Sheeting 3m x 0.85m BG28 (pc)
9. Cement Blocks 20cm x 20cm x 40cm (pc)
10. Door Assembly (pc)
11. Gutter Assembly 6.40m + Downpipe
12. Handwashing Reservoir 1m³ (pc)
13. Sand (m³)
14. Gravel (m³)
15. Cement 50kg (sacks)
400 SCOPE

These design guidelines specifically define the quality of materials and workmanship to be used when constructing toilets in refugee settings. A description of principles of excreta management programmes in addition to excreta management technical options and their advantages and disadvantages can be found in the UNHCR WASH Manual.

401 SITE SELECTION

A basic requirement is that the site selected for the toilet facility is free from the risk of high winds, flooding, subsidence, or erosion.

402 PREVENTION OF SURFACE OR GROUND WATER CONTAMINATION

UNHCR and WASH actors must ensure that all excreta containment systems including any pits, tanks, lagoons, sewerage or soakaway do not contaminate surface water or shallow groundwater sources.

All excreta management systems must be located at least 30 metres away from groundwater sources. The bottom of any pit or soak-away must be at least 1.5m above the highest average groundwater table level. These distances should be increased for fissured rocks and limestone.

In some situations temporary groundwater contamination from on-site excreta management systems may not be of immediate concern if the groundwater is non-potable. An example of this can be found in coastal areas where groundwater is heavily saline beyond drinking water health limits of 1,500μS/cm². In all cases, local legislation should be respected.

403 GUIDELINES FOR PIT REINFORCEMENT

All toilet pits should have an upper reinforcement ring of either: wooden beams, wooden trunks, brick masonry or concrete to evenly spread the load of the superstructure and raise it above ground level by at least 20 - 30cm to avoid water entering the pit.

Any toilet built on soft, sandy or collapsing soils should have a brick or concrete lined pit to at least 1m below the ground surface or greater if the soil is still unstable. Any desludgable toilet should have a fully lined pit that is able to withstand repeated evacuation. Safety should be of the utmost consideration when manually excavating pits. In soft soils, pit walls should be adequately cross-braced and excavation must never exceed 2.0m depth.
404 GUIDELINES FOR TOILET SLAB STRENGTH
404.1 The toilet slab and supporting beams must be sufficiently strong to support the weight of users and should not flex or give the user reason to doubt its strength. Support beams should span at least 50cm into each of the pit walls.

404.2 Wooden, concrete or plastic slabs should be tested with the weight of 4 persons before use. Concrete slabs should be reinforced regardless of their type. Wooden planks, trunks and beams should be free from insect attack of any kind with no other defects which would affect its strength. Wooden structures in contact with the ground should be treated with used engine oil or diesel to deter termites.

405 GUIDELINES FOR TOILET SLAB ANCHORAGE
405.1 Latrine slabs should be firmly anchored in place. If plastic latrine slabs are used they should be firmly attached to the support structure either through the use of sufficiently long nails, bolts with washers, metal stakes, or heavy gauge wire.

406 GUIDELINES FOR SANITARY SEALING
406.1 In all toilet installations there should be no visible gaps between the squat plate and the pit walls either through the use of at least 30cm of tamped clay soil or 30cm of concrete sanitary seal.

407 GUIDELINES FOR THE USE OF PLASTIC SHEETING
407.1 Plastic sheeting used in toilet super structures should meet the international minimum humanitarian standards (i.e. 200g/m² 700N tensile strength, UV stabilized laminated woven or braided mesh of black high density polyethylene between two white layers of low density polyethylene). Plastic sheeting is typically supplied as sheets 6m x 4m or in rolls 4m x 50m long. Before using plastic sheeting consider if there are more suitable durable materials available locally.

407.2 Plastic sheeting should be attached to wooden toilet frames using domed head nails, or standard nails with either wooden battens or some other form of load spreading structure (e.g. bottle tops). The most effective way of attaching plastic sheeting to a wooden frame is to wrap it around a wooden batten and then nail the batten to the support structure. Nails spacing should be no more than every 30cm. Some humanitarian plastic sheeting contains reinforcing bands of grey colour and nails should pass through these bands.

407.3 Plastic sheeting should be securely fixed to the ground by wrapping the edge in a wooden post and burying it to at least 40cm deep. If rope is attached to plastic sheeting it should either be attached through a reinforced eyelet or it should be tightly tied around a knot in the plastic sheeting itself.
407.4 The use of plastic sheeting toilet superstructures is an emergency solution and must be phased out after the first six months of any response. Flaps of plastic sheeting may be used in the initial first phase response provided they are adequately weighted at the bottom of the flap and they are phased out within 3 months. Female blocks with plastic flap doors should be equipped with a privacy screen.

408 GUIDELINES FOR TOILET DOORS

408.1 Every toilet door should be hung straight and vertical with no more than 3mm gap between both sides of the door and the door frame and a maximum 10-20mm gap between the door and floor. All doors should open and close properly without fouling on the floor or door frame.

408.2 Each door should have at least three hinges of good quality heavy duty steel at least 50mm long, and every hole in the hinges should be filled with a screw of at least 4cm length.

408.3 All doors should be fitted with a long upright handle of at least 50cm length on the inside and the outside that allows both children from 3 years of age and adults to open and close the toilet. A simple to use yet secure internal locking device should be installed that is positioned for use by children and adults (such as a metal bolt).

409 GUIDELINES FOR COMMUNAL TOILET PRIVACY WALLS

409.1 Privacy walls should be installed completely around all female toilet facilities. Solid wooden fencing posts of at least 3m length should be installed every 4m to a depth of at least 1m. Wooden braces should be used every 5 posts and at corners. Small holes of 2 or 3cm should be cut in the plastic sheeting every 20cm to reduce wind load and deter theft. A double privacy screen with a small gap may be required in some cultures and contexts where there is a risk of people creating peep holes. Care should be taken on steep ground and a privacy roofing structure may be required to prevent onlookers.

410 GUIDELINES FOR LIGHTING

410.1 Ideally all toilet facilities should be adequately illuminated to at least 50 lumens per square metre (this can be easily verified using a smart
phone light meter app). However, lighting should not be provided solely at toilet blocks as there is a risk that men will congregate at these locations. Lighting for toilet blocks should be planned in consultation with users in particular women and girls.

411 GUIDELINES FOR VECTOR CONTROL MEASURES
411.1 UNHCR and WASH actors should ensure that the toilet design eliminates fly and mosquito breeding. All vent pipes should be fitted with galvanized metal fly screens. Toilet cubicles should be kept shaded with lightly sprung self-closing doors. If the toilet is not of the VIP design, tightly fitting closable lids should be used.

412 GUIDELINES FOR RAIN AND STORMWATER PROTECTION
412.1 The ground directly around the outside of the toilet facilities should be backfilled and compacted to slope outwards and prevent surface water entering or eroding the toilet facilities. A drainage ditch at least 30cm deep should be installed around the WASH services to minimize external surface water entering the block.

413 GUIDELINES FOR ADDITIONAL WASH BLOCK ACCESSORIES
413.1 Small modifications to toilet blocks can greatly increase the dignity of users. UNHCR and WASH actors should ensure that all toilet cubicles are equipped with either hooks or shelves so that users are able to hang additional clothes or possessions off the floor when using the facilities. If possible, the relatively cheap addition of a mirror can greatly improve the experience of using WASH facilities.

414 COLLECTION OF ANAL CLEANSING AND SANITARY MATERIALS
414.1 UNHCR and WASH actors should ensure that provision is made for the separate collection and disposal of used anal cleaning materials or women’s sanitary material if there is a risk they may block or damage the toilet infrastructure or any desludging equipment. This also has the added advantage of extending the life of the system.
MATERIAL SPECIFICATIONS OF COMMON CONSTRUCTION MATERIALS

415.1 Gravel used for constructing concrete toilet slabs must be clean and free from mud, dust and plant material. UNHCR and WASH actors must ensure that only crushed aggregates (not river gravel) between 6mm and 10mm are be used to prevent inter granular crack propagation across the thin toilet slab and to ensure an adequate covering under bars.

415.2 Sand used for latrine slabs should be coarse (no fines), clean and free from mud, dust and plant material.

415.3 Water should be non-saline and free from organic matter.

415.4 Bricks should be fully burnt (ringing sound when two bricks are hit together), of consistent shape and size and should be sufficiently strong (crush test) with a high proportion of clay.

415.5 Cement must be fresh (manufactured in the last three months) dry, and should be stored in a safe, dry, place at least 15cm off the ground. Toilet slabs should be cast with a 1:2:4 concrete mixture. Care should be taken to ensure that the mixture is not over watered (bucket slump test should show no greater than ¼ reduction in the slump height). Cast slabs should be immediately covered with straw, cement bags, sacking or leaves to keep the concrete moist and cool. The concrete should be cured with frequent watering at least twice daily for at least 10 days before use.

415.6 Reinforcement bars should be free from rust and of the correct type and size for concrete construction work (typically a characteristic yield stress of at least 210 N/mm²). Steel reinforcement should be placed on the lower side of the slab (the part in tension) with at least 12mm concrete covering under every bar. Reinforcement should be laid in both directions. Where the slab is rectangular, the bars parallel to the smaller span should be below the bars reinforcing the greater span. Domed Mozambican slabs must be reinforced with the correct size chicken wire covered with wire mesh and a mixture of 1 part cement to two parts sand.

<table>
<thead>
<tr>
<th>Box: Spacing of mild steel bars for concrete toilet slabs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
</tr>
<tr>
<td>1.00m</td>
</tr>
<tr>
<td>1.25m</td>
</tr>
<tr>
<td>1.50m</td>
</tr>
<tr>
<td>1.75m</td>
</tr>
<tr>
<td>2.00m</td>
</tr>
</tbody>
</table>
416 HANDWASHING STATIONS DESIGN CONSIDERATIONS

416.1 UNHCR and WASH actors must plan for at least one functional hand washing dispenser per communal or public toilet block, ensuring at least one handwashing dispenser for every five toilet cubicles. Hand-washing dispensers should be conveniently located within 10m of each toilet exit and their use should be actively promoted. The water dispensing device and soap must be located within easy reach of all users, especially children. Liquid soap, or bars attached to string, may be used if there is soap theft. All handwashing units that use bars of soap should have a fixed self-draining dish where the soap can be placed between use without getting dirty or becoming mislaid.

416.2 Hand-washing water storage containers should be sized to hold at least half a day of hand-washing water. To conserve water and avoid wastage, the hand-washing taps may need to be restricted with orifice plates to flows of 50 cubic centimetres per second (0.05 litres per second). Calculation of the total volume of hand-washing water required should be based on 0.5 to 1.0 litre of water per person per day. Hand washing reservoirs must be covered to prevent contamination or vector breeding.

417 ENVIRONMENTAL CONSIDERATIONS FOR SOURCING WOOD

417.1 Ensure that all supplies of wood for household latrine slabs, latrine superstructures, privacy screens, and latrine brick production has been procured from sustainable sources outside of the refugee camp environment.

418 DECOMMISSIONING

418.1 The toilet should be decommissioned when the level of excreta is within 50cm of the surface (DO NOT WAIT FOR THE PIT TO FILL TO THE SURFACE OF THE LATRINE SLAB). The superstructure should be removed and the pit should be back-filled with earth to a height of approximately 50cm to allow for settlement. Approximately 10 kg of lime may be used per cubicle to help neutralize the pH of the pit and assist in decomposition and drying. Where possible, quick growing plants or trees should be planted on the site to assist with drying of the pit.

419 UNHCR STANDARD TOILET DESIGNS FOR REFUGEE SETTINGS

419.1 The following drawings should be used in conjunction with these technical design guidelines.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-400/2015a</td>
<td>Communal Trench Latrine (Poles + Plastic) – EMERGENCY</td>
</tr>
<tr>
<td>D-401/2015a</td>
<td>Communal Trench Latrine (Wood + Plastic) – EMERGENCY</td>
</tr>
<tr>
<td>D-402/2015a</td>
<td>Household Domed Slab Mass Fabrication</td>
</tr>
<tr>
<td>D-403/2015a</td>
<td>Household Toilet / Bathing Unit (1 Family, Dome Slab, Alternating)</td>
</tr>
<tr>
<td>D-404/2015a</td>
<td>Household Toilet / Bathing Unit (Septic Tank and Drain Field)</td>
</tr>
<tr>
<td>D-405/2015a</td>
<td>Raised Storage Latrine (Holding Tanks) - EMERGENCY</td>
</tr>
<tr>
<td>D-406/2015a</td>
<td>Urine Diverting Dry Toilet (UDDT)</td>
</tr>
<tr>
<td>D-407/2015a</td>
<td>Institutional Latrine (Desludgable with Raised Option)</td>
</tr>
<tr>
<td>D-408/2015a</td>
<td>Institutional Latrine (Septic Tanks and Drain Field)</td>
</tr>
</tbody>
</table>
USEFUL REFERENCES

 http://www.actioncontrelafaim.org/publications/fichiers/wsh_acf_0.pdf
 http://reliefweb.int/sites/reliefweb.int/files/resources/2533D212287DCAC6C1256D780035CC8D-lou-water-02.pdf
- Lambert, R., and Davis, J. (2002), 'Engineering in emergencies 2nd Ed.', Register of Engineers for Disaster Relief (RedR), London.
 http://wedc.lboro.ac.uk/resources/pubs/Emergency_EDS_and_options_for_Haiti.pdf
 http://www.eawag.ch/forschung/sandec/publikationen/compendium_e/index_EN
http://www.lifewater.org/resources/san1/san1d4.pdf

http://www.who.int/water_sanitation_health/publications/2011/tn14_tech_options_excreta_en.pdf?ua=1